#include <cstdio>
#include <stdio.h>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
// Implementation of Dijkstra's algorithm using adjacency lists
// and priority queue for efficiency.
// Running time: O(|E| log |V|)
// from Stanford ACM Team Notebook 2011-12
const int INF = 2147483647;
typedef pair<int, int> PII;
class Dijkstra {
private:
int N;
vector<vector<PII> > edges;
vector<int> dist, dad;
public:
Dijkstra(int number_of_nodes) {
N = number_of_nodes;
edges = vector<vector<PII> >(N);
}
void addEdge(int from, int to, int weight) {
edges[from].push_back(make_pair(weight, to));
}
void run(int start_node) {
// use priority queue in which top element has the "smallest" priority
priority_queue<PII, vector<PII>, greater<PII> > Q;
dist = vector<int>(N, INF);
dad = vector<int>(N, -1);
Q.push(make_pair(0, start_node));
dist[start_node] = 0;
while (!Q.empty()) {
PII p = Q.top();
//if (p.second == end_node)
//break;
Q.pop();
int here = p.second;
for (vector<PII>::iterator it = edges[here].begin(); it != edges[here].end(); it++) {
if (dist[here] + it->first < dist[it->second]) {
dist[it->second] = dist[here] + it->first;
dad[it->second] = here;
Q.push(make_pair(dist[it->second], it->second));
}
}
};
}
int getDistanceTo(int end_node) {
return dist[end_node];
}
vector<int> getPathTo(int end_node) {
vector<int> path;
for (int i = end_node; i != -1; i = dad[i]) {
path.push_back(i);
}
reverse(path.begin(), path.end());
return path;
}
};
int main() {
int number_of_nodes, number_of_neighbors, neighbor, weight, case_number = 0, start_node, end_node;
while (cin >> number_of_nodes && number_of_nodes) {
case_number++;
Dijkstra dijkstra = Dijkstra(number_of_nodes);
for (int i = 1; i <= number_of_nodes; i++) {
cin >> number_of_neighbors;
for (int j = 0; j < number_of_neighbors; j++) {
cin >> neighbor >> weight;
dijkstra.addEdge(i - 1, neighbor - 1, weight);
}
}
cin >> start_node >> end_node;
dijkstra.run(start_node - 1);
cout << "Case " << case_number << ": Path =";
vector<int> path = dijkstra.getPathTo(end_node - 1);
for (int i = 0; i < path.size(); i++)
cout << " " << path[i] + 1;
cout << "; " << dijkstra.getDistanceTo(end_node - 1) << " second delay" << endl;
}
return 0;
}
Thursday, April 23, 2015
UVa 341 - Non-Stop Travel
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment