#include <stdio.h>
#include <vector>
#include <queue>
#include <utility>
#include <string.h>
#include <algorithm>
using namespace std;
#define MAX_NODES 100000
#define MAX_EDGES 100000
#define MAX_NODES_TO_VISIT 10
const int INF = 2147483647;
typedef pair<int, int> PII;
class Dijkstra {
private:
int N;
vector<vector<PII> > edges;
vector<int> dist, dad;
public:
Dijkstra(int number_of_nodes) {
N = number_of_nodes;
edges = vector<vector<PII> >(N);
}
void addEdge(int from, int to, int weight) {
edges[from].push_back(make_pair(weight, to));
}
void run(int start_node) {
// use priority queue in which top element has the "smallest" priority
priority_queue<PII, vector<PII>, greater<PII> > Q;
dist = vector<int>(N, INF);
dad = vector<int>(N, -1);
Q.push(make_pair(0, start_node));
dist[start_node] = 0;
while (!Q.empty()) {
PII p = Q.top();
//if (p.second == end_node)
//break;
Q.pop();
int here = p.second;
for (vector<PII>::iterator it = edges[here].begin(); it != edges[here].end(); it++) {
if (dist[here] + it->first < dist[it->second]) {
dist[it->second] = dist[here] + it->first;
dad[it->second] = here;
Q.push(make_pair(dist[it->second], it->second));
}
}
};
}
int getDistanceTo(int end_node) {
return dist[end_node];
}
vector<int> getPathTo(int end_node) {
vector<int> path;
for (int i = end_node; i != -1; i = dad[i])
path.push_back(i);
reverse(path.begin(), path.end());
return path;
}
};
int node_to_visit[MAX_NODES_TO_VISIT];
int main() {
int cases;
for (scanf("%d", &cases); cases; cases--) {
int number_of_nodes, number_of_edges;
scanf("%d%d", &number_of_nodes, &number_of_edges);
Dijkstra dijkstra = Dijkstra(number_of_nodes);
for (int i = 0; i < number_of_edges; i++) {
int from, to, weight;
scanf("%d%d%d", &from, &to, &weight);
dijkstra.addEdge(from, to, weight);
dijkstra.addEdge(to, from, weight);
}
int number_of_nodes_to_visit;
scanf("%d", &number_of_nodes_to_visit);
for (int i = 0; i < number_of_nodes_to_visit; i++)
scanf("%d", &node_to_visit[i]);
int distance[MAX_NODES_TO_VISIT][MAX_NODES_TO_VISIT];
distance[0][0] = 0;
for (int i = 1; i < number_of_nodes_to_visit; i++) {
dijkstra.run(node_to_visit[i]);
for (int j = 0; j < i; j++) {
distance[i][j] = dijkstra.getDistanceTo(node_to_visit[j]);
distance[j][i] = dijkstra.getDistanceTo(node_to_visit[j]);
}
distance[i][i] = 0;
}
int T[1 << MAX_NODES_TO_VISIT][MAX_NODES_TO_VISIT];
memset(T, 127, sizeof(T));
int final_mask = (1 << number_of_nodes_to_visit) - 1;
dijkstra.run(0);
typedef pair<int, pair<int, int> > PIII;
priority_queue<PIII, vector<PIII>, greater<PIII> > q;
for (int i = 0; i < number_of_nodes_to_visit; i++) {
T[1 << i][i] = dijkstra.getDistanceTo(node_to_visit[i]);
q.push(make_pair(T[1 << i][i], make_pair(1 << i, i)));
}
int sol = INF, finals_count = number_of_nodes_to_visit;
while (!q.empty()) {
PIII now = q.top();
PII state = now.second;
if (state.first == final_mask) {
if (now.first + T[1 << state.second][state.second] < sol)
sol = now.first + T[1 << state.second][state.second];
if (--finals_count == 0)
break;
}
q.pop();
for (int i = 0; i < number_of_nodes_to_visit; i++) {
int new_mask = state.first | (1 << i);
int new_cost = T[state.first][state.second] + distance[state.second][i];
if (new_mask != state.first && new_cost < T[new_mask][i]) {
T[new_mask][i] = new_cost;
q.push(make_pair(new_cost, make_pair(new_mask, i)));
}
}
}
printf("%d\n", sol);
}
return 0;
}
Thursday, April 23, 2015
UVa 11813 - Shopping
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment